MIT ROCKET TEAM

NASA ULSI 2012-2013 CDR

Overview

- Mission Updates
- Payload and Subsystem Updates
- Rocket and Subsystem Updates
- Testing Updates
- Management Updates

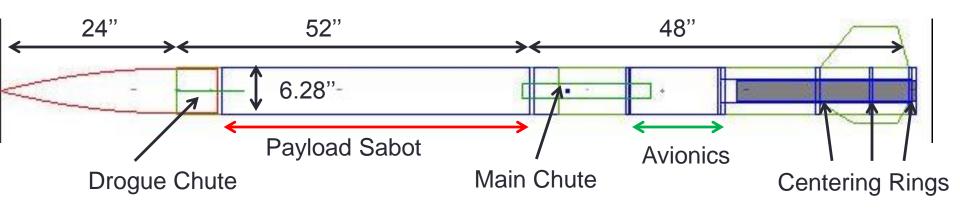
Mission Requirements

VORTEX Rocket:

- Safely house quadrotor payload during launch and ascent
- Safely deliver the quadrotor payload to an altitude of 2500ft during decent

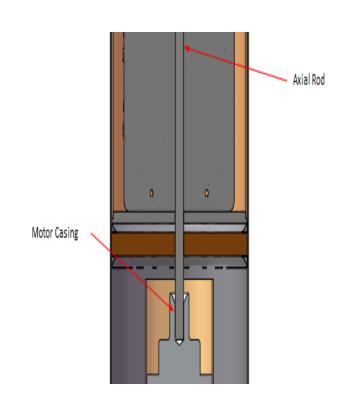
SPRITE Payload:

- Exhibit a controlled deployment from a descending rocket
- Safely house all hardware and electronics during all phases of the mission: launch, normal operations, and recovery
- Relay telemetry and video to the ground station
- Relay telemetry to the nose cone via optical communication
- Track the nose cone and ground station


HALO Payload:

- Ability to detect high altitude "lightning" events
- Gather atmospheric measurements of: the local magnetic field, EMF radiation, ULF/VLF waves, and the local electric field.
- Gather atmospheric measurements of pressure and temperature at a frequency no less than once every 5 seconds upon decent, and no less than once every minute after landing.
- Take at least two still photographs during decent, and at least 3 after landing.
- All data must be transmitted to ground station after completion of surface operations.

Rocket Update (1)

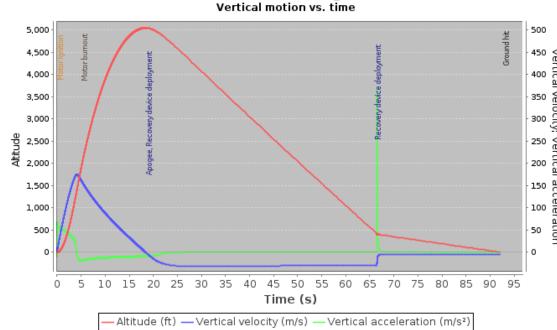

- Requirements:
 - Launch rocket to 5280 ft
 - Deploy Quadrotor Sabot at 2500 ft
- Concept
 - Solid Rocket Motor
 - Carbon Fiber Airframe
 - Redundant Flight Computers
 - Sabot Deployment
 - Dual Deployment Recovery

- Launch Vehicle Dimensions
 - 10.375 feet Tall
 - 6.28 inch diameter
 - 46.27 Pound liftoff weight

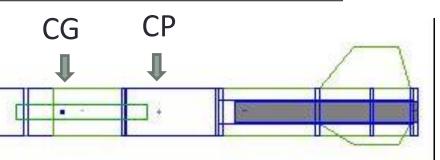
Rocket Update (2)

- Key Design Features
 - Motor retention via threaded rod to recovery eye bolt
 - Full Carbon Fiber Airframe
 - Avionics package inside coupler tube above motor
 - Recovery package consisting of dual deployment via Tender Descender with sabot/ quadrotor deployment
 - Analysis has been performed on key structures in both the axial and lateral direction

Rocket Airframe and Materials


- Airframe
 - Carbon fiber: 11oz Soller Composites Sleeve
 - Aeropoxy 2032/3660
- Bulkheads & Centering Rings
 - ½" Plywood
- Fins
 - Plywood/Carbon Fiber Sandwich
 - Tip-to-tip carbon sheets
- Various
 - Phenolic tubing: motor mount, avionics package
 - Nylon: avionics assembly components
 - Stainless steel: quick links, eye bolts
 - Nomex: chute protectors, deployment bags

Rocket Propulsion Design

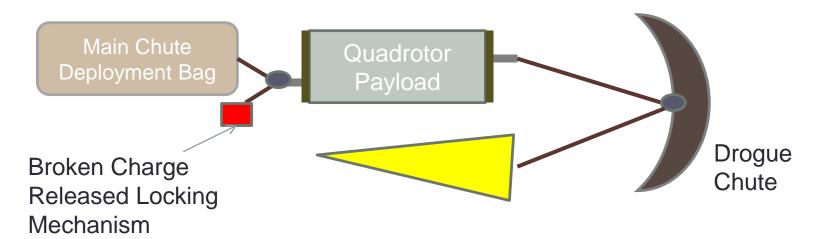

- Rocket Motor Cesaroni L1115
 - 4996N-s impulse more than enough to reach target altitude given mass estimates
 - Proven track record and simple assembly
 - Cheaper and more reliable than Aerotech alternative
- Full-scale Test Motor Cesaroni K661
 - Will provide nearly identical flight profile to verify launch vehicle design

Static stability margin

- Center of Pressure
 - 90" from nose tip
- Center of Gravity
 - 77" from nose tip at launch
- Stability Margin
 - ~2.95 Calibers

Simulated flight

Rocket Recovery System


- 3 ft drogue parachute
 - Deployment at apogee
 - Shear 2x 2-56 screws
 - 3.5 g black power charge
 - 16' x 1" tubular nylon webbing harness
- 8 ft main parachute
 - Deployment at 2500 feet
 - Pulled out by Quadrotor and sabot
 - Sabot released by Tender Descender
 - Deployment Bag used
 - 3.25' x 1" tubular nylon webbing harness

Calculated Energy and descent rates within USLI
parameters. Calculated drift in worst case 20 mph
wind is within ½ mile.

Final Descent Rates and Energy			
Nose/Sabot Final Descent Rate	13.9 ft/s	70.7ft-lbf	
Rocket Body Under Main	13.9 ft/s	19.8ft-lbf	
Quadrotor Under Chute	21.2 ft/s	69.7 ft-lbf	

Payload Deployment

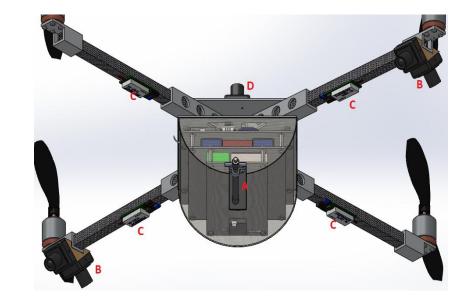
- Tube-stores payload during flight
- Charge released locking mechanism releases sabot at 500 ft
- Chute Bag ensures clean main parachute opening
- Separation of rocket and nose cone prevents parachute entanglement

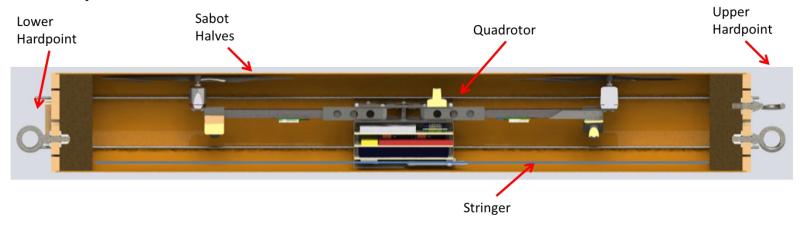
Staged Recovery System

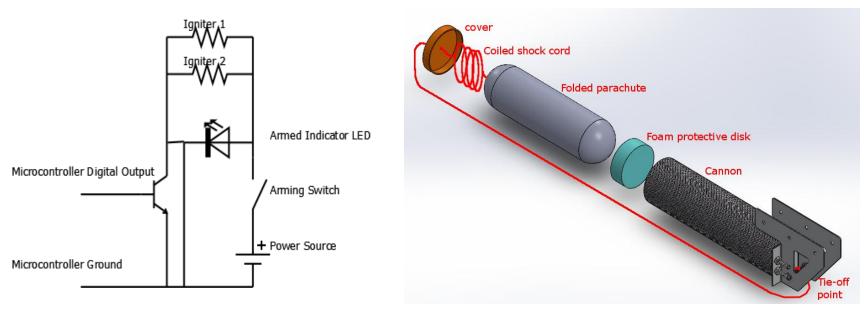
- Proven Recovery Method
- 8 Successful Flights

Payload Design

- Sprite
 - Specialized Rotorcraft for IR Communications, Object Tracking and On-board Experiments
- Halo
 - High Altitude Lightning Observatory


Sub-Scale Test Launch


- Goal
 - Test stability of our design
- Specifications
 - ½ scale in size
 - Not ½ scale in weight due to safety concerns
 - Same (scaled) CG and CP locations as predicted for full scale rocket
 - Resulted in similar predicted static margin to full scale rocket
 - Cesaroni H1225

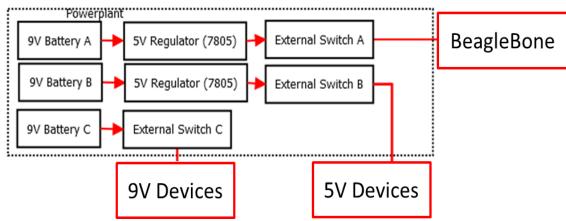

Structures and Propulsion


- Composite and aluminum structure
- Avionics housed in covered "trays" below the central platform
- Fits in a 3.5ft sabot
- Mass of ~10lbs with a 24lb thrust
- 13in propeller and 830W motor per arm

Reserve Parachute

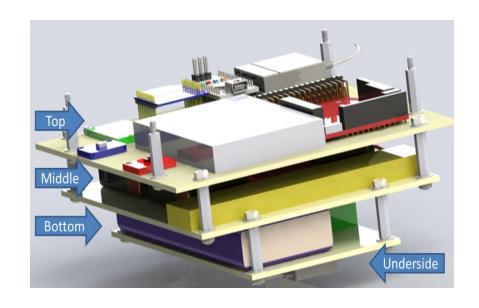
Avionics Hardware and Software

- Ardupilot Flight computer
 - Controls attitude/position determination and correction
- Cameras Captures images of rocket and ground
 - Five Logitech HD cameras (USB interface with BeagleBone)
 - One up and four 45 degrees down
- BeagleBone Embedded processor running a Linux OS
 - · Collects, processes, stores, transmits camera and science data
 - Communicates relative rocket location to Ardupilot
- OpenCV Realtime image processing
 - Runs objections tracking and recognition algorithms

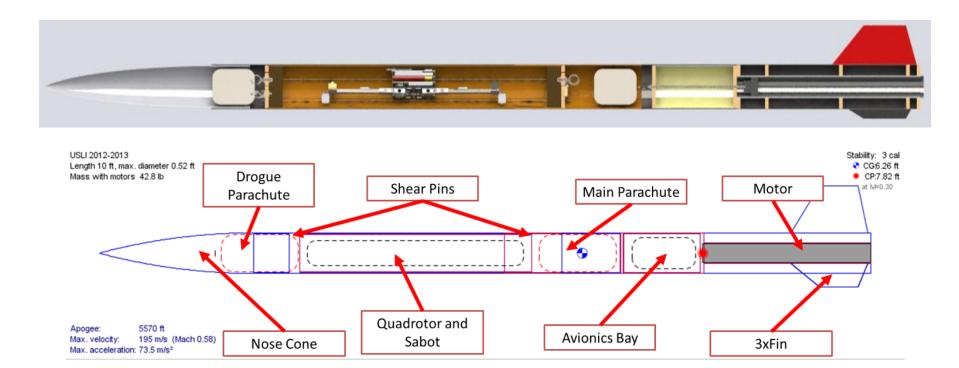

Communications and Power

Redundant TX/RX

- Transceivers
 - Xbee Pro (UART)
 - 3DR Radio (SPI)
 - Spektrum RC Transmitter (Ground)
 - Spektrum RC Receiver (Airborne)


Separate Battery Lines

- Four 9 volt batteries power the science sensors, processor, and secondary chute
- Motors and flight computer are powered by a Turnigy 2650mAh LiPo Battery (with ESC regulators)



HALO Overview

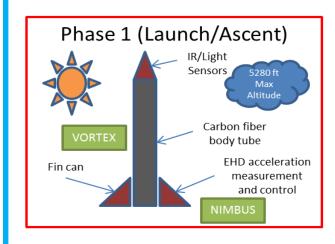
- Science Computer
 - BeagleBone
- Sensors
 - Pressure and Temperature
 - VLF Receiver
 - Magnetic Field Strength
 - Lightning Detector
- Sensors (Custom)
 - Electric Potential

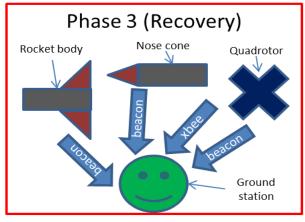
Payload Integration

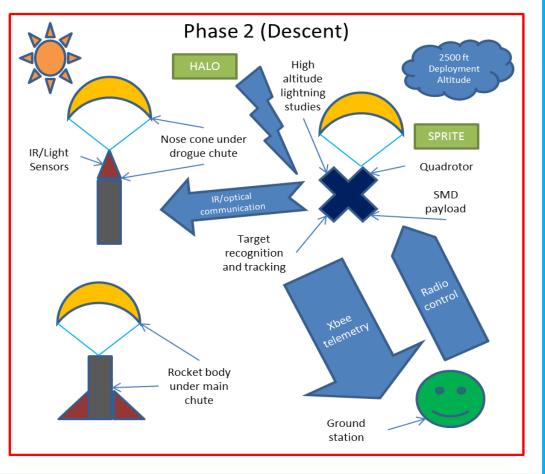
Payload Safety Verification and Testing Plan

- The rotor and subsystems will be tested in three phases to minimize risk:
 - Phase 1: Ground Testing
 - Phase 2: Test rotorcraft (commercially available RC)
 - Phase 3: Rotorcraft Testing
- Ensures safe and proper function of systems throughout testing.
- Thorough analysis of between phases
- Flight testing of craft to analyze and determine margin of error of flight behavior

Test Plan


Rocket and Recovery


- Nose cone release
 - Shear pin failure force
 - Black powder charge
 - Separation distance
 - Barometric testing
- Charge release locking mechanism
 - Black powder charge
 - Operational verification
- Craft deployment testing
- Emergency locator transmitter test


Payload

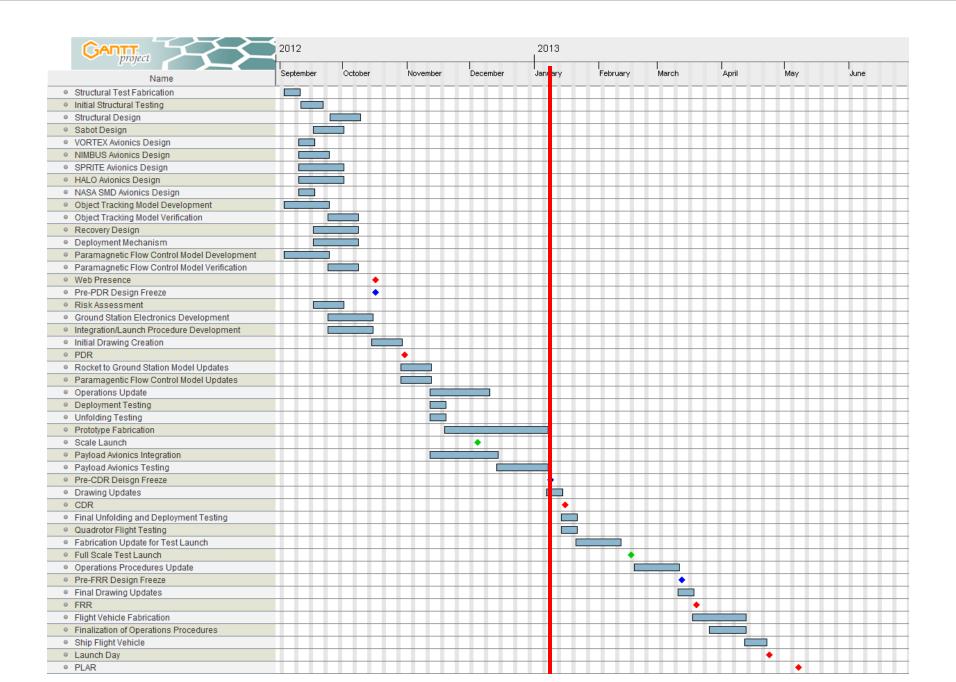
- Complete avionics system from 'test craft' integrated with SPRITE rotorcraft
- Test autonomous flying capabilities
- Drop tests to simulate deployment
- Simulated missions performed
- RC transmit and data telemetry tests

Flight Operations

Milestones, Testing, and Outreach

- 9/29: Project initiation
- 10/29: PDR materials due
- 11/18: Scaled test launch
- 1/14: CDR materials due
- Jan: Scale quadrotor test
- Jan: Avionics sensors test
- Feb: Deployment test
- Feb: Full-scale test launch
- 3/18: FRR materials due
- 4/17: Travel to Huntsville
- 4/20: Competition launch
- 5/6: PLAR due

11/17: MIT Splash Weekend


Winter:

- MIT Museum
- Boston Museum
- Science on the Streets

Spring:

- Rocket Day @ MIT
- MIT Spark Weekend
- MIT Museum

QUESTIONS?

Payload Goals

- Decrease deployment time for quadrotor high altitude missions
- Improve information acquisition, processing, and transmission on and between mobile targets in an dynamic environment
- Validate high altitude lightning models via direct measurements

Payload Requirements (SPRITE)

- Safely house all hardware and electronics during all phases of the mission: launch, normal operations, and recovery
- Relay telemetry and video to the ground station
- Track the nose cone and ground station

Main Payload Requirements (HALO)

- Demonstrate the ability to detect high altitude "lightning" events
- Gather atmospheric measurements of: the magnetic field, EMF radiation, ULF/VLF waves, and the local electric field.
- Gather atmospheric measurements of: pressure and temperature at a frequency no less than once every 5 seconds upon decent, and no less than once every minute after landing.